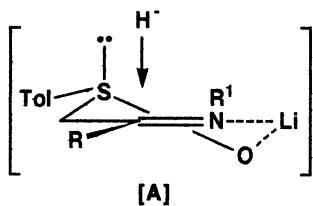
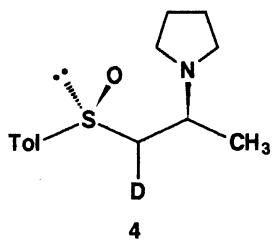

## Stereoselective Reduction of Enamino Sulfoxides

Katsuyuki OGURA,\* Hiroshi TOMORI, and Makoto FUJITA  
 Department of Applied Chemistry, Faculty of Engineering,  
 Chiba University, 1-33 Yayoicho, Chiba 260


Enamino sulfoxides, *p*-TolS(O)CH=C(NR<sup>1</sup>R<sup>2</sup>)R (where R<sup>1</sup> = alkyl, R<sup>2</sup> = H or alkyl), were reduced with lithium tri(*s*-butyl)borohydride or borane-THF, respectively, to give  $\beta$ -amino sulfoxides of *R*<sup>\*</sup>,*R*<sup>\*</sup> configuration with high stereoselectivity.

$\beta$ -Amino sulfoxides **1** have been shown to be good synthetic precursors for optically active amines.<sup>1)</sup> Although **1** was prepared by the addition of (*p*-tolylsulfinylmethyl)lithium to imines, only aromatic amines were available in this method. Another approach to **1** is reduction of enamino sulfoxide **2** or its tautomer,  $\alpha$ -sulfinyl imine **3**. However little attention has been paid to this reaction as compared with many reports on stereoselective reduction of  $\alpha$ -sulfinyl ketones.<sup>2)</sup> There are only a few literatures on the reduction of cyclic enamino sulfoxides with NaBH<sub>3</sub>(CN)<sup>3)</sup> or NaBH<sub>4</sub>,<sup>4)</sup> but we found that these hydrides reduced acyclic **2** with poor selectivity. We report here that lithium tri(*s*-butyl)borohydride (L-Selectride) or borane-THF reduces **2** with high stereoselectivity (Eq. 1).


The enamino sulfoxides **2** were easily prepared by the condensation of readily available  $\alpha$ -sulfinyl ketones<sup>5,6)</sup> with primary or secondary amines.<sup>7,8)</sup> Stereochemistry of **2** was determined to be *E* by NOE.<sup>9)</sup> We found that highly stereocontrolled reduction of **2a,b** was performed with L-Selectride (97-98%.



selectivity). Typically, a THF solution of L-Selectride (1.5 mol equiv.) was added dropwise to a  $\text{CH}_2\text{Cl}_2$  solution of **2a** at  $-20^\circ\text{C}$ . After 6 h at  $-20^\circ\text{C}$ , the mixture was quenched with methanol. The usual workup and purification by preparative TLC (silica-gel,  $\text{AcOEt}$  - methanol 10 : 1) gave the amino sulfoxide **1a** (57%) along with *p*-tolylsulfinylacetone derived from the unreacted **2a** (43%). The diastereomeric ratio ( $R^*,R^* : R^*,S^*$ ) of **1a** was determined to be 97 : 3 by HPLC analysis after acetylation. Lowering the reaction temperature to  $-78^\circ\text{C}$  brought about little enhancement of the selectivity (Table 1). The reduction proceeds probably via the imine form **3** since **2c-e** are not reduced under the same reaction conditions.<sup>8,10</sup> Thus the high selectivity is ascribed to a chelation model [A].<sup>11</sup>



Stereoselective reduction of **2c-e** was achieved with borane-THF complex.<sup>12</sup> For example, a THF solution of borane-THF complex (1.0 M, 0.44 mmol) was added to a  $\text{CH}_2\text{Cl}_2$  (4 mL) solution of **2c** (0.20 mmol) over 3 min. After 3 h at  $-78^\circ\text{C}$ , water (10 mL) was added and the mixture was extracted with  $\text{CH}_2\text{Cl}_2$  (10 mL x 3), dried over  $\text{Na}_2\text{SO}_4$ , and concentrated. The residue was dissolved in THF (2 mL) and treated with 1,4-diazabicyclo[2.2.2]octane (0.4 mL) to decompose **1c**-borane complex. After the usual workup, the crude product was subjected to preparative TLC to give **1c** (95%) as colorless crystals. The ratio of ( $R^*,R^*$ )-**1c** : ( $R^*,S^*$ )-**1c** was 87 : 13 ( $^1\text{H}$  NMR). Other results are summarized in Table 1. Polar solvents were less effective. The reaction involves direct hydroboration to the C=C bonds of **2c-e**. This is confirmed by a deuterating experiment: quenching the reaction of **2c** with  $\text{D}_2\text{O}$  gave an  $\alpha$ -deutero- $\beta$ -amino sulfoxide **4**, that was identified by  $^1\text{H}$  NMR.



The relative stereochemistry of **1** was estimated as follows. Desulfurization of the major isomer derived from (*S*)-**2d** with Raney Ni afforded (*R*)-1-(*s*-butyl)-piperidine<sup>13</sup> (86%) (Eq. 2). Thus, the major isomer of **1d** must have *S,S* configuration. The same relative stereochemistry was assigned to the major isomers of **1a-c** and **1e** since they showed good similarity in their spectroscopic behavior.<sup>15</sup> It is noteworthy that the transformation of Eq. 2 demonstrates the utility of the present reaction for a facile synthesis of optically active amines.

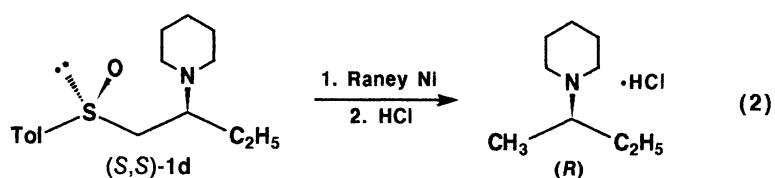



Table 1. Stereoselective reduction of 2

| Enamino sulfoxide (2) | Reagent (mol equiv.)       | Solvent                         | Temp/°C, Time/h | Product <sup>a)</sup> | Yield/% <sup>b,c)</sup> | $R^*,R^* : R^*,S^*$   |
|-----------------------|----------------------------|---------------------------------|-----------------|-----------------------|-------------------------|-----------------------|
|                       | L-Selectride (1.5)         | CH <sub>2</sub> Cl <sub>2</sub> | -20, 6          |                       | 57 [43]                 | 97 : 3                |
| <b>2a</b>             | L-Selectride (2.5)         | CH <sub>2</sub> Cl <sub>2</sub> | -20, 48         | <b>1a</b>             | 62 [37]                 | 97 : 3                |
| <b>2a</b>             | L-Selectride (1.5)         | CH <sub>2</sub> Cl <sub>2</sub> | -78, 6          | <b>1a</b>             | 14 [80]                 | 98 : 2                |
|                       | L-Selectride (3.0)         | CH <sub>2</sub> Cl <sub>2</sub> | -20, 5          |                       | 41 [45]                 | 98 : 2                |
|                       | BH <sub>3</sub> ·THF (2.2) | CH <sub>2</sub> Cl <sub>2</sub> | -78, 3          |                       | 95                      | 87 : 13               |
| <b>2c</b>             | BH <sub>3</sub> ·THF (2.4) | THF                             | -78, 2          | <b>1c</b>             | 81                      | 81 : 19               |
| <b>2c</b>             | BH <sub>3</sub> ·THF (2.2) | DME <sup>d)</sup>               | -78, 3          | <b>1c</b>             | 77                      | 63 : 37               |
|                       | BH <sub>3</sub> ·THF (2.2) | CH <sub>2</sub> Cl <sub>2</sub> | -78, 3          |                       | 73                      | 73 : 27 <sup>e)</sup> |
|                       | BH <sub>3</sub> ·THF (3.4) | CH <sub>2</sub> Cl <sub>2</sub> | -78, 7          |                       | 82                      | 85 : 15               |

a) Only major ( $R^*,R^*$ ) isomers are shown. b) Total yield of both  $R^*,R^*$  and  $R^*,S^*$  isomers. c) Values in the brackets are the yields of the recovered *p*-tolylsulfinylacetone. d) 1,2-Dimethoxyethane. e)  $S_s, S_c : S_s, R_c$ .

## References

- 1) a) B. Ronan, S. Marchalin, O. Samuel, and H. B. Kagan, *Tetrahedron Lett.*, **29**, 6101 (1988); b) G. Tsuchihashi, S. Iriuchijima, and K. Maniwa, *ibid.*, **1972**, 513.
- 2) Stereoselective reduction of  $\alpha$ -sulfinyl ketones: G. Solladie, G. Demaillly, and C. Greck, *Tetrahedron Lett.*, **26**, 435 (1985); H. Kosugi, M. Kitaoka, A. Takahashi, and H. Uda, *J. Chem. Soc., Chem. Commun.*, **1986**, 1268; G. Solladie, G. Demaillly, and C.

Greck, *J. Org. Chem.*, **50**, 1552 (1985). Also see: M. C. Carreno, J. L. G. Ruano, A. M. Martin, C. Pedregal, J. H. Rodriguez, A. Rubio, J. Sanchez, and G. Solladie, *ibid.*, **55**, 2120 (1990); G. Solladie, C. Frechou, G. Demailly, C. Greck, *J. Org. Chem.*, **51**, 1912 (1986); Solladie, J. Hutt, C. Frechou, *Tetrahedron Lett.*, **28**, 61 (1987); G. Solladie and J. Hutt, *ibid.*, **28**, 797 (1987); K. Ogura, M. Fujita, T. Inaba, K. Takahashi, and H. Iida, *ibid.*, **24**, 503 (1983).

3) M. E. Price and N. E. Schore, *J. Org. Chem.*, **54**, 5662 (1989).

4) D. H. Hua, S. N. Bharatih, P. D. Robinson, and A. Tsujimoto, *J. Org. Chem.*, **55**, 2128 (1990).

5) Preparation of optically active  $\alpha$ -sulfinyl ketones: N. Kunieda, J. Nokami, and M. Kinoshita, *Chem. Lett.*, **1974**, 369; K. Ogura, M. Ishida, H. Tomori, and M. Fujita, *Bull. Chem. Soc. Jpn.*, **62**, 3531 (1989). Also see Ref. 2.

6) Racemates were employed throughout this work unless otherwise noted.

7) For example, a mixture of 1-(*p*-tolylsulfinyl)propan-2-one (5.0 mmol) and benzylamine (5.5 mmol) was allowed to stand for 0.5 h at room temperature, and the resulting solid was recrystallized from methanol to give **2a** (94%) as colorless crystals (mp 149 - 150 °C dec).<sup>8)</sup> Similarly, **2c** (mp 108 - 110 °C) was prepared in a quantitative yield. Since **2b,d,e** were obtained as viscous oils, they were employed in the following reduction without purification.

8) <sup>1</sup>H NMR showed that **2a** was stereochemically pure and was in equilibrium with the imine form **3a** (**2a** : **3a** = 73 : 27 in CDCl<sub>3</sub> at 27 °C) though only **2a** exists in a crystalline form as shown by the IR spectrum.

9) An NOE (12%) was observed between the olefinic and the benzylic protons of **2a**.

10) Since employment of large excess L-Selectride (3.0 mol equiv.) and elongation of reaction period (48 h) did not affect the yield of **1a** significantly, the recovery of *p*-tolylsulfinylacetone is attributable to unfavorable formation of the azaenolate, *p*-TolS(O)CH=C(NR<sup>1</sup>Li)R, which no longer participates in the reduction.

11) The attack of the hydride from the upper side leads to a chair-like transition state. See: P. Deslongchamps, "Stereoelectronic Effects in Organic Chemistry," Pergamon Press, Oxford (1983), Chap. 6.

12) Borane-THF reduction of **2a**, however, showed poor selectivity (*R\*,R\** : *R\*,S\** = 59 : 41), possibly owing to a different pathway via the imine form rather than the enamine form.

13) (*R*)-1-(*s*-Butyl)piperidine-hydrochloride: mp >270 °C; [α]<sub>D</sub> +3.82° (c 0.50, H<sub>2</sub>O) (lit.<sup>14)</sup> for the *R* enantiomer (the ee is unknown) +0.96° (c 4.4, H<sub>2</sub>O)).

14) J. Kenyon, H. Phillips, and V. P. Pittman, *J. Chem. Soc.*, **1935**, 1072.

15) Kagan et al. assigned the stereochemistry of **1** based on the spectroscopic similarity.<sup>1a)</sup> For the methylene protons of -CH<sub>a</sub>H<sub>b</sub>-S(O)-, we also found the similarity that  $|\delta H_a - \delta H_b| > 0.4$  ppm for all of the *R\*,R\** isomers while  $|\delta H_a - \delta H_b| < 0.13$  ppm for all of the *R\*,S\** isomers. Similar behavior was reported in the <sup>1</sup>H NMR of 1-substituted 2-(*p*-tolylsulfinyl)ethanols: G. Solladie, C. Greck, G. Demailly, and A. Cavallo, *Tetrahedron Lett.*, **23**, 504 (1982).

(Received May 22, 1991)